European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105 1ST TRAINING SCHOOL Universitat de Barcelona, Spain, 13 - 15 June 2013

organized by UB, MIND-IN2UB - Dept. of Electronics and CSIC-IDAEA

Erdem ŞENNİK

PhD student / erdemsennik@gmail.com TURKEY

Expertise

- Pd nanowires: Fabrication, characterization and gas sensing properties
- TiO₂ nanotubes/nanowires: Fabrication, characterization and gas sensing properties

Project Name	Date	Project Type
Research and Development of nanotechnological Hydrogen Sensors	01.02.2007-01.02.2010	National
Interaction of Volatile Organic Compounds (VOCs) of different Phthalocyanine Molecules by Spectroscopic and Quantum Chemical Methods	15.11.2009-15.11.2011	National
Development of Automotive Gas Sensors Based on Nano-Metal-Oxide Semiconductor with increased Selectivity, Sensitivity and Stability	15.10.2011-15.10.2014	International

Aim

Development of Automotive Gas Sensors Based on Nano-Metal-Oxide Semiconductor with increased Selectivity, Sensitivity and Stability.

TiO₂ nanotubes (on Ti foil/thin film)

Erdem Sennik, Zeliha Colak, Necmettin Kılınc, Zafer Ziya Ozturk, Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor, International journal of hydrogen energy 35 (2010) 4420–4427.

N. Kılınç, E. Şennik, Z.Z. Öztürk, Fabrication of TiO_2 nanotubes by anodization of Ti thin films for VOC sensing, Thin Solid Films 520 (2011) 953–958.

Doped and Undoped TiO₂ Nanostructures

Necmettin Kılınç, Erdem Sennik, Müge Işık, Ali Şems Ahsen, Osman Öztürk, Zafer Ziya Öztürk, *Pabrication and gas sensing properties of C*-HNOLOGY doped and un-doped TiO2 nanotubes, Ceramics International, ACCEPTED.

RESULTS

- TiO₂ nanotube arrays (1 µm in length and 90 nm in pore diameter) on Ti foil are fabricated with the anodization method using an aqueous HF electrolyte.
- The sensitivity increases from 10 (25 °C) to 18 (150 °C) with increasing temperatures under exposure to 100 ppm H₂.

- TiO₂ nanotube arrays are fabricated by anodization of Ti thin films with different anodization solutions depending on anodization temperatures and anodization voltages.
- The maximum sensor response to VOCs is observed for N-I TiO₂ nanotube sample due to its high porosity and thinner tube wall thickness.

CONCLUSIONS

- TiO_2 nanostructures are sensitive to H_2 , VOC.
- TiO₂ nanostructures are become more sensitive by doping
- Working temperature of sensor can be increased by doping.
- My aim is to investigate gas sensing properties of TiO₂ nanostructures after doping (Future work).

